Coal Mining - basics

Geoff Pitkin
Principal Consultant GPPH & Associates

Coal Mining Methods

- Underground
 - Bord & Pillar
 - Longwall
- Surface
 - Open Cut Strip
 - Open Pit
- Highwall
 - Auger
 - Continuous Highwall Miner
 - Punch

Bord & Pillar

- Continuous Miner & shuttle cars or continuous haulage
- Highly flexible, high cost – can handle geological variability
- 1.5-3m per pass, but can take up to 3 passes in good conditions
- Preferably less than 10° dip and less than 500m depth of cover
- Multiple units possible to vary coal source and increase production
- Best with good floor and roof plus strong coal
- Working section may include roof and floor but coal may be left on roof or floor to improve conditions
- Single seam – reasonably constant production
- Pillar extraction to improve coal recovery to a maximum of around 65%

Continuous Miner
Longwall

- Specialised equipment consisting of hydraulic face supports, shearer, chain conveyor, sizer, etc
- Inflexible technique requiring a block of 200-400m wide by 2-4km long for a single face
- High capital requirement, but can be low operating cost
- Standard longwall has a face height of 1.5-4.5m with a dip preferably less than 10° and less than 1000m depth of cover
- Can mine through small faults and dykes with increased dilution, and can mine thicker seams using top coal caving at the expense of up to 20% dilution
- Large production peak generally greater than 3 times average
- One month delay during face relocation
- Usually single longwall coal source plus development units
- Coal recovery up to 85%

Unplanned Longwall Delay

Open Cut Strip

- Flat lying with less than 10° dip and a single or multi-seam deposit
- Long narrow strips less than 100m wide and 2-15km long with a maximum pit depth less than 200m
- Dragline and/or shovel/truck stripping of blasted overburden, possibly assisted by production dozing
- Coal mining by front end loader or excavator into trucks
- Coal mining rate relatively uniform but subject to surges due to availability of exposed coal
- Mining exposed coal gives supply from a single source for an extended period. Blending from multiple seams/areas is possible
- Dilution is from weak floor & cleanup due to waste not separating from coal and coal contact irregularities. Increases with poor drainage & blast damage. May also include weathered, spon. com. or contaminated U/G coal.
Open Cut Strip Layout

Dragline Strip Mining

Coal Hot Out of the Open Cut

Open Pit

- Any dip:
 - Shallow dip with benches on seams
 - Steep dip with benches on horizontal levels
- Smaller pit dimensions, generally multi-seam with greater than 30% of waste hauled out of pit. Mining progresses in large cut-backs or panels
- Varies from small, shallow operations to large capacity mines up to 400m deep
- Shovel or excavator & truck waste removal
- Excavator or front end loader coal mining with rear dump truck haulage
- Multiple coal sources available from a number of seams giving a uniform production rate
- Dilution from similar sources to open cut, but may be greater with steep dips due to through seam blasting
- Coal recovery generally greater than 90%
Augering
- 1.35-1.8m dia. auger or a 1.5m dia. twin auger
- Reliably excavate to 160-200m from the open cut highwall
- Can multi-pass in thicker seams
- Recovery 30-60% with limited dilution
- Relatively unaffected by weak strata
- Approximately 0.5Mtpa
Continuous Highwall Miner
- 1.5-3m extraction height from a rectangular heading using a continuous miner and highwall miner continuous haulage
- Reliably excavate to 350-500m from the highwall
- Can double pass in thicker seams leaving a septum
- Recovery 45-60% with dilution similar to underground mining
- Must have strong strata
- Approximately 1.0Mtpa

Punch Mining
- Longwall or bord and pillar mining with panel access directly from an open cut highwall
- Similar mining conditions and constraints to underground mining by these techniques

Mine Planning & Technical Services
- Pit design to maximise economic recoverable coal (NPV?, meet product specifications, maximise production)
- Scheduling to keep primary stripping equipment busy and meet production targeted quantity & quality
- Mining method and geology provide iterative economic relationship
- Provide communication, coordination and monitoring from pit to market (survey, geology, coal quality)
- Other issues
 - Water management
 - Geological and geotechnical problems
 - Environmental control and rehabilitation
 - Blasting design and monitoring
 - Production monitoring
 - Hauls and Dump location
 - Medium & long term planning

Production
- Moving overburden is main focus in most surface mining operations
- Majority of equipment is used on overburden removal
- Coal mining is a minor cost item but can have a major impact on profitability
- Weather and underground drainage is important
 - Rain affects blasting
 - Water disrupts coal ripping, blasting and mining
Drill & Blasting

- Why blast
 - To break up overburden for digging
 - Alternatives ripping and surface miners

- Issues
 - Environmental (overpressure and vibration)
 - Damage to coal roof and edge
 - Good blasting vital for productivity

Drilling & Blasting

- How to control blast damage
 - Correct depth for holes
 - Set standoff based on material type
 - Touch drilling
 - Increase standoff at edges
 - Charge and initiation sequence

Check true depths

Edge damage
Dragline

- **Advantages**
 - Low cost per bcm moved
 - High productivity
 - Can coal close to face

- **Disadvantages**
 - High capital cost
 - Requires good conditions, less flexible
 - Depth of mining limited
 - Blending from pit more difficult
 - Cable handling and power demand

Shovels

- **Advantages**
 - More flexible than draglines
 - Can be very productive in right conditions
 - Need wide faces, good blasting, flat floors

- **Disadvantages**
 - Cost per bcm higher than dragline
 - Associated equipment (trucks, dozers, graders, road maint)
 - Several passes may be needed hence coal not available
 - Cable handling
Hydraulic Excavators

Advantages
- More flexible than shovels
- Lower capital cost
- Can be very productive in right conditions
- Good coaling tool

Disadvantages
- Cost per bcm higher than shovels (but not by much)
- Associated equipment (trucks, dozers, graders, road maint)
- Dig depth limited (5m under) - several passes may be needed hence coal not available
- Shorter lifespan

Front end loaders

Advantages
- Most flexible machine (though needs good floor)
- Most mobile

Disadvantages
- Cost per bcm higher than shovels/excavators
- Associated equipment (trucks, dozers, graders, road maint)
- Dig depth limited - several passes may be needed hence coal not available
- Water control on floor
Coal Preparation - mining

- Clean roof
 - Dozer to push roof material
 - Does parting stick to roof
 - How variable is the seam contact
 - What is clean – how dirty is the top coal
 - Aim to minimise roof losses and dilution
 - Rubber tyred equipment gives lower loss
 - Grader cleanup can improve coal recovery

Rip coal
- Dozer to rip for loader
- Depth limited by ripper tyne, hardness
- Rip and push generates fines
- What ripping spacing, is cross ripping needed
- Fines generation can be reduced by optimum ripping

Thick seam - rip and push

Two passes if coal quality different
Single pass if blending needed
Coal Preparation - mining

- Blast coal
 - Seam must be thick enough (3m?)
 - Stemming material in hole
 - Plastic nonel blast lines in coal
 - Crush zone around each hole

- Clean floor and edges
 - Dozer to push floor coal and along highwall
 - Does coal stick to floor
 - What is clean
 - Aim to maximise coal recovery but minimise dilution
 - What coal should be mined – bypass vs. wash – selection of working section
 - Soft floor and poor drainage give higher dilution
 - Throw blast can place coal toe under spoil and increase edge dilution

Selective mining

- To recover high value intervals
 - Eg recover a SS Coking coal section out of a thicker seam
 - Normally slows production
 - Leaves higher ash product
 - Total value added must be determined

- New machines being introduced to eliminate blasting can also be selective

Surface miner
Summary

- Mining is a compromise between:
 - maximum productivity
 - minimum cost
 - coal recovery vital over long term

- Underground & highwall mining characteristics:
 - Single coal type with potentially high dilution
 - Mines a working section based partly on geotechnical considerations
 - Very high peak production
 - All coal is cut by pick with high fines content
 - No selective mining possible – limited range of cutting heights

- Surface mining characteristics:
 - Multiple coal sources with dilution dependant on seam thickness and mining conditions
 - Working sections based on economics and practicality
 - Uniform production rate
 - Coal may be ripped, pushed, blasted or dug unshot with varying fines generation
 - Selective mining possible to provide feed for different products or blends
 - Mining from multiple sources can assist in overcoming problems (blinding screens, excessive rejects or slimes) but can also result in surging due to cyclical loading